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Conditions under which quantum mechanics can be made compatible with the 
curved space-time of gravitation theories is investigated. A postulate is imposed 
in the form v - e~ where v is the kinematical Hamilton-Jacobi (geometric optic 
limit) velocity and vg is the group velocity of the waves. This imposes a severe 
condition on the possible coordinates in which the Schr~Sdinger form (the 
coordinate realization) of quantum mechanics can be set up for purposes of 
calculating observable effects. Some such effects are calculated for a class of 
theories and are compared with experiments. 

1. I N T R O D U C T I O N  

Today ,  as we prepare  to ce lebra te  the eightieth b i r thday  of Professor  
Dirac,  we also look back  on fifty-five years of the glorious work he has done  
in diverse fields of  physics:  quan tum mechanics,  quan tum statistics,  theory  
of  rad ia t ion ,  e lectron theory,  quan tum elec t rodynamics ,  cosmology,  and 
gravi ta t ion .  Dur ing  a stay at the Ins t i tu te  for Advanced  Study, Professor  
Di rac  enjoyed cut t ing Oppenhe imer ' s  trees and taking long walks. I accom- 
pan ied  him on many  of his excursions and we had frequent  discussions on 
physics,  biology,  evolut ion,  cosmology,  and how to solve intr icate  puzzles. 
The  fol lowing work is dedica ted  to Professor  Dirac  and the indel ible  

memor ies  of  his kindness.  
M y  subject  is the re la t ionship  between quan tum mechanics  and gravity.  

The  work is based on a revision of Einstein 's  theory such that  the r ight -hand 
side of  the field equat ions  contains ,  beside the usual  mat ter  term, the 
s t ress-energy of the gravi ta t ional  field itself. Interest ingly,  the presence of 

I Presented at the Dirac Symposium, Loyola University, New Orleans, May 1981. 
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the field stress-energy is not motivated directly as a requirement. Rather. for 
entirely different reasons, the metric tensor g~,,, is required to satisfy certain 
conditions and these conditions determine the g~,,, without the help of any 
field equations. Then, when one asks what type of field equations are 
satisfied by such g~ .... it becomes possible to prove that a field stress-energy 

J ,  l ,  t~, is required which adds to the matter part ~'u and has exactly those 
properties that are expected from a gravitational field stress-energy. The 
motivations for constructing the g~,,, in the special form mentioned include 
the desire to formulate the theory so as to satisfy a strong principle of 
equivalence compatible with quantum mechanics. 

Most interesting is the tightness and the inner consistency of the 
mathematical framework. In this theory the mathematical framework is 
simple and helps to clarify the physical interpretation of the theory. In this 
respect it is in accord with Professor Dirac's long-standing philosophy of 
physical theory in which he advocated the adoption of physical interpreta- 
tion to the mathematical structure rather than the mathematical structure to 
the physical interpretation. His prime example for this philosophy was 
quantum mechanics. If we are right, the theory of gravitation provides a 
second example of the basic strength of this philosophy. Interestingly. the 
framework also meets Professor Dirac's demand for clear and simple 
mathematics in the formulation of a physical theory (Appendix A). 

We start with extremely simple arguments having to do with the 
formulation of the principle of equivalence and, step by step. lead to the 
motivations of imposing certain conditions on g,,,. These conditions are 
classically desirable on grounds of dynamical aspects of the principle of 
equivalence, and also quantum mechanically on grounds of the equality of 
phase shifts for inertial and gravitational mass. They essentially determine 
the form of g~,,, and via g~,,,, the form of the field equations. The field 
equations so obtained imply a field-geometJ3' equivalence because the equa- 
tions of motion are then obtainable from the t~i via the usual field-theory 
procedure that its divergence is the volume-force acting on a particle, and 
this leads exactly to the geodesic equations of motion of the g,,,. This 
demonstration completes the first part of the exposition. 

In the second part it is demonstrated that there exists a parametric link 
between this theory and the usual theory of gravity such that if one writes 
T~"= r~'+ Xt~, where T," is the total stress-energy, then the conventional 
theory and the present theory correspond to the special cases X = 0 and 
X = 1, respectively. The generalized (X-dependent) equations are mathemati- 
cally well defined and possess exact solutions for arbitrary X. Since only one 
value of X can correspond to a definite theory, we then propose to 
investigate the X-dependent equations so as to determine the value of X from 
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arguments of a physical nature. Two kinds of arguments are used: Theoreti- 
cal and experimental. They both lead to ~. = 1. The theoretical arguments 
have to do with the principle of equivalence and the uniqueness of the 
Hamiltonian. They require the value of ~ to be unity. The experimental 
arguments have to do with the empirical predictions of the h-dependent 
equations and become clearest in the case of two quantum gravity experi- 
ments, namely, the Colella, Overhauser, and Werner experiment on the 
gravitational phase shift of a neutron, and the Hughes-Drever experiment 
on the absence of mass-anisotropy in a gravitational field. These two 
experiments are shown to independently confirm the value of ~ to be unity 
to within their respective accuracy. The paper ends with a brief summary of 
the main results and some appendices to balance the brevity of the text. 

2. THEORETICAL CONSIDERATIONS 

2.1. Principle of Equivalence. The new theory formulates dynamics in 
such a way that everything depends only on potential differences. The 
argument leading to this construction is very simple: let the metric gu~ be a 
function g~,,,(~, q~) of a gravitational_ field tensor potential ~- (4~)-  - ~ and its 
trace ~ = q~. Also, let q~ and therefore q~ be solutions of the covariant 
d'Alembert equations of the same space g,,,. We then do two things: (1) We 
interpret ,~ as covariant generalization of the usual Newtonian potentials. (2) 
Since the solutions will have integration constants, we write the metric as 
g~.,(,~ - ~', ,~ - q,'), implying the g~. has a group property (a kind of gauge 
invariance) whereby only the potential differences are of physical signifi- 
cance. 

How would one determine the nature of the group property? This is 
something which cannot be guessed ahead of time. We must study some 
empirical data and their interpretations in current theories so that we may 
use them as correspondence arguments. Consider the principle of equiva- 
lence as manifested in the gravitational red shift: This effect is always 
understood as v' = v[ goo(r)/goo( r')]t/2 and has recently been tested (Vessot 
& Levine, 1981), in this form, to a high accuracy of a few parts in 10 6, This 
suggests that g0o is multiplicative and may be an exponential, therefore. The 
question is, of what quantity? If now we look at the field equations of 

I,  general relativity (R~ =0) ,  one of them, R ~ = 0 ,  is equal to 2 times the 
general Laplacian (Eddington 1957) of q~ = - ~ log(g0o). Therefore g00 can 
be written as go0 = e 2 ,  where q~ is interpretable as a potential. Theoreti- 
cally the red shift formula takes the form v' = ve -~*-*'~. Using this form as 
a correspondence argument, the general form can then be viewed as 
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exponential  for all g~,,,. Clearly the usual theory does not have this more 
general form.-' However,  it is interesting to note that Einstein himself might 
have fully approved such an interpretation. In a 1907 article, recently 
translated by Schwartz (1977), he states that time dilation must " in  all 
strictness" be an exponential,  t' = te Y~/'':, where - T~/c  2 is a special case of  

- ~ ' .  In his subsequent  research Einstein seems to have forgotten this 
impor tant  requirement,  which is here restated and carried to its logical 
conclusion. 

2.2. Determinat ion of the Metric.  The next step of enforcing such a 
general form might appear  virtually impossible (because of  all the worries of  
nonlinear  equat ions and arbitrary coordinates),  but  in fact it turns out to be 
quite simple: Let g~,, be a matrix exponential  having the form g = enTfle ~, 

where 2~ = ,4q~ + B~, ~] is the special relativity limit g~,,, ~ r/x,,, A = 1A is a 
scalar matrix, and A and B are constants  to be determined. We interpret the 
static field as ,/,~ ~ ~,o, all other componen ts  vanishing. Then ~a = q,r = ~,o, so 
in this case g 0 o = e  ~'4+B~* - g , = e  A*. Correspondence  to the red shift 
already gives A + B = - 2 ,  and hence the only remaining task is to de- 
termine A or B. For  this we need a new condition.  This new condit ion can 
be an experimental  fact or a theoretical argument  of consistency, Both 
avenues lead to the same conclusion: (1) Experimental ly we have the 
bending of  light rays, which implies A = 2. (2) Theoretically the time 
dilation (red shift) has the counterpar t  of length contract ion.  Since the 
group proper ty  required by the red shift is basic, we must  accord a similar 
group proper ty  to length contract ion,  because a basic requirement of relativ- 
istic theory is the symmetric  t reatment  of space and time variables. This 
implies that d x ' =  dxe  ~-~' from which we get A = 2 as before. Therefore,  
the exponential  (Yilmaz, 1974, 1979) 

(1) 

may be regarded as a solution to the problem of the metric, (Note  that in 
first order this exponential  gives the linearized Einstein metric.) 3 We already 
know the static limit by correspondence.  So the static line element is 

d s 2 = e  2r dt2 - e2r dx2 -k- dy2 + d2 2 ) 

where q~ = ~ / c  2= G M / c 2 r  is the solution of  the Laplace equat ion of the 

2For example in nonisotropic Schwarzchild metric where - grr = e'~ one of the field equations 
(T ~ = 0) is e-"(7/'/r - I / r2)+ 1/r 2 = O, which does not allow r/~ "q - K. 

3Thus, the linearized Einstein metric could be used as a correspondence condition to determine 
.4 and B. 
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same line element. This line element is known to be in agreement with all 
experiments having to do with a static field. Likewise, when effects having 
to do with other components are considered (first and second order in ep), 
the general metric is again found to be in complete agreement with 
experiments. Only two questions were ever raised about this theory (Will, 
1974), and both are due to simple misunderstanding: In the first instance 
the scalar 4~ was understood as the whole field present, whereas it is only the 
scalar trace of the more general field ~. In the second instance a conjecture 
concerning the most general form of the solution to the field equations was 
taken to be an essential part of the theory, whereas it only means that the 
most general solution of the field equations is not known. The conjecture 
itself is never proven or disproven because a prescription of how to expand 
the metric beyond second order (when certain terms do not commute) is 
missing. The latter is only a technical problem which, by the way, the usual 
theory also has. (See Parameter Extension, Section 3.1.) 

Completion of this theory into a mathematical framework is, again, 
very simple. The theory is given by just three equations: equation (1) and 

[] 2ep~ = 4~rou~,u" (2) 

du 1 ,, 
~ F =  ~ % g ~ u  u (3) 

To compare with Einstein's theory, we compute 

R, ~ 6 ~ R = 2 ( D '  " - -q5;~ + t, ) (4) 

from the metric by computing its left-hand side. In all cases we have studied 
where the curvature is obtainable from the exponential in closed form, t~ is 
exactly the standard field stress-energy of qs. Since such a 6' is interpretable 
as afieldstress-energ2/, the remaining part, [] -qS~, the covariant d'Alembertian 
of q~ with respect to gu,,' identifies the matter stress-energy, which is 
equation (2). This equation is as in other field theories of physics where the 
fields are related to the source. In this case the source is rd '~ ouuu". When 
rd'= 0 the field satisfies a d'Alembert equation, which is our original 
assumption. Equation (3) gives the geodesic equations of motion, which 
depend only on g~,,,. Thus we can put (2) into (4), which become our 
(geometric) field equations. There is little need to solve them because we 
already have the solutions we need. Therefore the only thing we have to do 
is to form the geodesic equations and calculate the motions of particles. It is 
further found (Yilmaz, 1978) 4 (in all the cases we have computed in closed 

4In Yilmaz (1978) and in Yilmaz (1979: 1980) p/, is to be corrected as p~ = pu + Kj, and K u = 0 
as in the present paper. For simplicity a 4~r is sometimes omitted. 
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i ,  form) that one has D,,t~ = o Og .g~Bu~uP/2 ,  which is a times the right-hand 
side of the geodesic equations of motion. This completes the f i e ld - theoo '  
interpretat ion,  because the equations of motion can now be written 

du u _ D,,t~ 
o - -  

ds 4~r 

which is exactly as in field theory. As will be seen in Appendix B, the 
equations of motion then lead to the conservation laws of energy-momen- 
tum Zk(m0kut, k)=C~,. Note that, in the field-theory form above, masses 
must not be dropped out of the equations of motion (even when m, = my), 
as their presence is needed for the total conservation laws and for the 
quantum mechanical phase shifts. 

2.3. Basic Consequences of the T h e o l .  The net result of this simple 
theory of gravitation is that the structure of space-time physics is turned 
into a standard field theory of spin-2 particles, although in a space curved 
partly by its own stress-energy. Several of its desirable features are worthy 
of special notice. We mention a few below that are easily provable on the 
simple static metric: 

(1) A particle with zero rest mass has a unique signal velocity v = V = 
t;~ = c (  x )  = c e  - 2ep for all wavelengths  (Yilmaz, 1980; 1977); v, V, t~ being the 
particle, phase, and group velocities. This allows a unique operational 
procedure of space-time measurements for both waves and particles. 

(2) With ,/, ~ q, - q,' the metric is scaled and the scaled metric is still a 
solution of the original field equations. Thus x ~ x ' ,  where x '  is the point of 
observation, leads to a "local" Lorentz metric g,,,, ~ rl~ .... c ( x ) -  c, although 
the frame is still noninertial (not freely falling). Thus in this theory the 
obsert~ed value of the velocity of light is always c as in special relativity. 

(3) For a particle with nonzero rest mass one has v = v~, v V =  c~-(x) 
c 2, also as in special relativity. This permits a generalization of quantum 
mechanics of particles from flat to curved space-times and thereby allows a 
detailed analysis of some quan tum grat~i O, experiments (Yilmaz, 1980: 1977). 

1, (4) With gauge c ( x ) - c  the tt, turns out to be a pure tensor, not 
eliminable with any coordinate transformation consistent with that gauge, 
and reduces exact ly  to the Newtonian field stress-energy of a static gravita- 
tional field. 

(5) In the strong-field limit the theory does not possess an event 
horizon (Yilmaz, 1975; 1979) and does not lead to a black hole behavior as 
can also be seen from the refractive index analogy n = e 2r Radially directed 
light will always escape (red shifted). 
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Thus the theory is compatible with a strong principle of equivalence, 
the wave-part icle duality of quantum mechanics (v = v g ,--, probability pos- 
tulate), the symmetry of space-time variables, gauge, theory, 5 operational 
procedure of space-time measurements, and a local field-theory interpreta- 
tion of space-time geometry. Because of these, a synthesis of space-time with 
quantum mechanics seems to be possible. Although the emphasis here is on 
the relation between gravity and ordinary quantum mechanics only, we 
believe that the theory will also permit a reasonable field quantization and 
provide a more general connection to the rest of physics than presently 
available. 

3. EXPERIMENTAL C O N S I D E R A T I O N S  

3.1. Parametric Extension.  The above completes the first part of our 
discussions where we have formulated the theory on purely theoretical 
grounds. In the second part we will direct our efforts toward an experimen- 
tal assessment of this theory vis-'a-vis the usual theory of gravitation. Since 
the two theories are very different, yet possess essential similarities, a 
reasonable way to compare them would be to establish a parametric link 
covering both. and test the value of the connecting parameter. We will show 
that there indeed exists an interesting extension in terms of a parameter k 
such that the two theories correspond to two special values of ~., namely, 
~. = 0 for the usual theory, and ~. = 1 for the new theory. Furthermore. the 
parameter  ~. is so introduced that, for any value of ~., the geodesic equations 
of motion are a consequence of the field equations as in the usual theory of 
gravitation. In other words, in a kinematical sense any value of ~. satisfies 
the principle of equivalence, that is, mass drops out of both sides of the 
equations of motion. However, when one investigates the dynamical aspects, 
for example, the quantum mechanical phase shifts, the value of X makes a 
crucial difference. For, although kinematically, any mass drops out of the 
geodesic equations of motion Duu = 0, the magnitude (and the structure) of 
the Hamiltonian nevertheless dynamically depends on the value of Yr. It is 
therefore possible to calculate those effects which depend on )t and compare 
them with various experiments. It is shown that experiments available at the 
time of this writing constrain ?, to be close to unity. This demonstration 
constitutes the main thrust of the second part of the paper. It is emphasized, 
further, that ?, = 1 also follows from fundamental theoretical arguments 
based on the principle of equivalence and the uniqueness of the Hamilto- 

5The existence of a local group ,%,, as an extension of the global q.,, of special relativity is, of 
course, in the spirit of gauge theory. 
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nian. The discussions that follow should therefore be considered not as an 
empirical determination of X but as an observational confirmation of X = 1. 

We introduce the parametric extension by the following three equa- 
tions: 

, , _ ,  ,, l, " 4 R~ ~6~R=S~r(% + X t u /  It)  

[] eq~ = 4~rr d, + ( X - l ) t .  

du~ 
ds - �89176176 

( 1 ' )  

( 2 ' )  

( 3 ' )  

When X = 1, these equations are equivalent to (1)-(3) of the new theory. 
When X = 0, equations (1') and (3') are those of the conventional theory 
(Tupper,  1974). 6 In this case equation (2') can either be ignored, or kept as a 
field-theory transcription of Einstein's theory]  In fact equation (2') with 
X = 0 reduces to the Gupta,  the Feynman, Thirring, and Weinberg interpre- 
tation of Einstein's theory, s For arbitrary X it is again found that 

D, t~ /4rr  = !~  2 ~ ~l~ "c"t~ 

hence the geodesic equations of motion are consequences of the field 
equations. In other words the X-dependent extension is so constructed that 
for X -- 0 and X = 1 it reduces to the usual and present theories, respectively, 
and for any value of X the geodesic equations of motion follow from the 
extended field equations under a current conservation a, , [(-g)~/2o(u#) x u"] 
~ 0 .  

We now show that, in the extended form, X is the ratio of "active 
t gravitational" mass m 0 to the "inertial" mass m 0 

X = m o / m  0 

To show this we first define the inertial energy-momentum of a particle. Let 
the inertial stress-energy be ~-~ = ou~,u". Integrating over a small volume 
containing the particle one has 

p. = f ( _  g),12 2 dr,, = rnou~, 

6Tupper (1974) noted that the "final arbitrariness" in the field equations resides only in ihe 
value of ?~. 

7Some authors introduce a t~' = - t]~ and interpret Einstein's theory in the form [] 2~ _ 4 v,ru,. + 
t-~ (X - 0). In our theor 3, (X = I) the nonlinear t~ does not appear in the equation (2). 

~Ohanian (1976) gives a systematic development based on Gupta, Feynman, Thirring, and 
Wcinberg papers. See Introduction and p. 103. 
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Here o is assumed to be a number of mass concentrations o 
~ ( - g )  1 /2moj8 (x -  xj). By looking at equation (2') the gravitational en- 
ergy-momentum p~ would be equal to p. if X = 1. When X v ~ 1, p~ is of the 
form 

p;= +(X-1) f (- g)'/2 : 

Using the Gaussian substitution dV,, = 0,, d~2, and the relation ~,,[(-g)I/zt~] 
= ( - g)l/2D,,t~ = ( - g) l /20du. /ds  (Appendix A), the integral is 

, I / 2  ~,] 
g,  t.] dO= f f ( -  g)'/2od .d /as 

Setting dO/ds  = u" dV~, and integrating over du. we have 

f ( -  g dV , = f ( -  g),/2 ;, dK, = p. 

The relation between ps and p. therefore is 

t 

There can in principle be a numerical integration constant K. causing p~ to 
become p~ ~ p s  K. due to dV integral, but this is zero since p. and p~ 
refer to the same particle, and since, given the initial values x ~', u~, they must 
both trace the same geodesic Du. = 0. Thus setting p. = m0u ~, ps = m'ou. the 
relation ~ = re'olin o immediately follows. This result may appear a little 
unexpected but it is correct. (It can be rederived by using other methods as 
shown in Appendix B.) It is just a consequence of the condition that the 
field equations lead to the geodesic equations of motion for any value of ?~. 
Then for X = 1 the inertial mass and active gravitational mass reduce to each 
other. The existence of a field-geometry equivalence was first noticed by 
Feynman (1971), who studied it in the context of the conventional theory. It 
turns out, however, that unless also ~ = 1, the equivalence does not extend 
to dynamics (ps = p.). that is, it does not guarantee the equality of active 
and passive gravitational mass. 

3.2. Experimental Test of ~. The relation ~ = m'o/m o shows that, 
although for any ?, the principle of equivalence is satisfied in the sense of 
"passive" gravitational mass equals "inertial" mass (both Dp,=O and 
Dp~ = 0 imply the same geodesic equations of motion Du, = 0), it is 
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nevertheless not satisfied in the sense of "active" gravitational mass equals 
"inertial" mass. Consequently, the two energy momenta p~ and p~ and 
therefore the two Hamiltonians H =  Pc) and H ' =  Xpo differ by a factor X. 
Furthermore, each Hamiltonian depends, through u o =  uo(X), on X. One 
can therefore compute various h-dependent effects and (if there are any that 
are measurably sensitive to X), test the value of X by experiment. 

There are two quantum gravity experiments which are sufficiently 
accurate to serve this purpose: The gravitational phase shift of a neutron 
and the isotropy of mass in a static gravitational field. Before we go into 
detail we must here make some comments as to the nature of the term in the 
Hamiltonian referring to these experiments. The quantity t~ is second order 
in q~ = GM/rc 2, hence the metric g~,,, and therefore Uo(X) is not influenced 
by X in first order of 4,. Therefore, in the first-order Newtonian limit the two 
Hamihonians are given by (constants mo c2, Xmo c2 are omitted) 

14 = p2/2mo - m, , , ,  H ' =  X( p ' - / 2 m o -  "'o~) 

The neutron experiment is first order in q5 and will be analyzed in view of 
these two expressions. 

The isotropy experiment is sensitive to a second-order term in H. In 
this case the relevant part of the Hamiltonians H and H'  is a perturbative 
anisotropic term A 

A H = ( X - 1 ) e s  AH'= X(X-- 1),/,2A 

where A=(2/9)(pZ/2mo)P2(cosa). The isotropy experiment will be 
analyzed in terms of these expressions. Here it is important to clarify how 
the anisotropic term is extracted and how it relates to quantum mechanics: 

(a) The term is obtained consistently with the quantum mechanical 
demand that the kinematical velocity v of a particle is equal to the group 
velocity vg of the associated wave. Consequently the above expressions are 
consistent with the probability postulate of quantum mechanics. 

(b) When X val the metric cannot be written as '~ g~,, ,(~-~',q5-qS') 
although it can as g,,(~,qS). This is so because, when X vSl, the form 
g~,,,(q~-q~', q5- q~') no longer satisfies the field equations with appropriate 
boundary conditions, so it cannot be used as a metric. In other words, for 
X ~ 1 the potentials ~, ~ become locally observable quantities, that is, they 
would be detectable by a sufficiently accurate experiment if X v s 1 (Appen- 
dix C). 

We now consider the neutron phase shift experiment (Colella et al., 
1975). This experiment tests the applicability of quantum mechanics in a 

9See for example footnote I above. 



Relativity and Quantum Mechanics 881 

gravitational field in the case of phase shift and, via the phase shift, the 
consistency of quantum mechanics with the strong principle of equivalence. 
The experiment yields a phase shift 

6 = - -  m o A q ~ t / h  

where t is the time of flight of neutron between two coincidences in a 
coherent beam. The accuracy of the experiment is about 1% and to this 
accuracy it is consistent with H and H '  only if [X - 1[ < 1%. Note that this 
test of the principle of equivalence is fundamentally different from other 
tests which are concerned with the mass independence of the equations of 
motion only. Before the result of the phase shift experiment was known 
there was a worrisome uncertainty because the weak principle alone could 
not lead to a definite prediction (Greenberger & Overhauser, 1980; 
Greenberger, 1968). 

The above interpretation of the neutron experiment assumes that both 
H and H '  are equally legitimate (principle of equivalence). Some colleagues 
seem to argue that if H were regarded as more legitimate than H '  (I would 
not know how to justify such an assumption), then the neutron experiment 
does not necessarily imply k = 1. Although we do not agree with such an 
interpretation (see Appendix B), we nevertheless point out that, even if one 
is willing to so ignore H' ,  the isotropy experiment can be used to infer ~ = 1 
via H alone. 

The isotropy experiment is accurate to about 5 •  10 -23 and to this 
accuracy yields a nul l  result. Calculations show that the experiment would 
have yielded a positive effect if in the anisotropic term (Appendix C) of H 

p2(cos ) 

the factor X - 1 were greater than 5 • 10 3. The experiment was performed 
by two independent groups and two different settings and no detectable 
violation of the isotropy of inertia (energy) was observed (Hughes. 1964; 
Drever, 1961). The j =  3 / 2  Zeemann terms in H were, however, found 
implying X =~ 0. We conclude that the two experiments here considered 
independently imply 1), - 11 < %1 confirming the strong principle of equiva- 
lence. ~o 

4. T H E O R E T I C A L  C O N S I D E R A T I O N S  ON 

From a theoretical point of view the problem of ?, is, of course, quite 
clear cut. Unless ?~ -- 1 the Hamiltonian is not well defined, and therefore, to 

io Note that H'= 2~ H applies also in the classical case, hence any classical experiment having to 
do with the value of ~ can also be used for test purposes. 
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achieve a unique Hamiltonian (energy), the value of X must be set to unity. 
This is a basic physical requirement, both in classical and in quantum 
mechanics. As we have repeatedly emphasized, the principle of equivalence 
provides additional motivation for setting X to unity. In a previous discus- 
sion we have seen that m 0 is the inertial mass, which is equal to "'passive" 
gravitational mass on account of the geodesic equations of motion. The 
mass m~ is the "act ive" gravitational mass. The uniqueness of the Hamilto- 
nian and the equality of "act ive" to "'passive" gravitational mass are 
therefore related in the sense that one implies the other. What is surprising 
here is that this stronger form of the principle of equivalence is not satisfied 
unless X = t although it was always presumed that the ordinary form of the 
principle of equivalence would guarantee the equality of "passive" and 
"act ive" gravitational mass. 

One could carry this discussion a step deeper by noting that, in the 
Newtonian theory, the equality of passive to active gravitational mass is a 
consequence of the rnomentum conservation laws. In order to appreciate the 
nature of this fundamental connection let us study the Newtonian limit of a 
two-body system in our field theory form. We have 

l, du~ = _~"t~ 
o dt 4 ~r 

where o = ZjmjS(x - x/) and 

) '  ~ - -  ), 

~ 2 0 =  - - o '  

with o ' =  Z/m' jS (x -  x/). The total field is 

7 7 1 )  

J 

The field-theory equations of motion are (after taking the divergence of t~) 

du 
o N = v % a / o  

and these are equivalent to two coupled equations written once at m~ and 
once at m 2 : 

( du~ ) m'~ 
= +m~ 

ml , i x , _ x 2 1 2  

= - m ,  12 W- 
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This is so because at m~, ~2q~ is equal to m] and at m 2 it is equal to m 2. 
F r o m  0~,q~ one gets m ' l / [ x l - - x 2 l  2 at m 2. This is because the self terms 
O j , ( m ' i / [ x  i - x i ]  ) are zero in both  cases (a particle is not under  a force due 
to its own field). Now we can see two interesting things: One is the equality 
of " iner t ia l"  and "ac t ive"  gravi tat ional  mass (due to ~72~ = - 0 '  in 

t z ,  _ _  " )  3,, ~ - ~7-~ 0~,,~ and the Lmposition of o '  = a). The other  is that if we add the 
two equat ions we get the conservat ion of m o m e n t u m  

d 
- ~ ( m l u u l  + rn2u ,2  ) = 0 

This example  also clarifies how the concept  of a test  par t i c le  must  be 
unders tood  in a field theory such as gravitation. If m~ is much smaller  than 
m 2 one would think that its reaction on m 2 would be negligible. But the 
above  analysis shows that this is not so. N o  m a t t e r  h o w  smal l ,  rn~ at tracts  m 2 
with equal (and opposi te)  force as m 2 attracts  m~ (earth at t racts  the apple  
and the apple at tracts  the earth with equal and opposi te  force), and this is a 
consequence of total conservat ion of momen tum.  In this way we can see 
that  the uniqueness of the Hamil tonian,  the principle of equivalence, the 
f ield-theory representat ion of the equations of  mot ion in terms of t~, and 
the conservat ion laws are all related to the simple requirement  that the 
"pas s ive"  gravitat ional  mass is equal to the "ac t ive"  gravitat ional  mass, 
which is, in turn, equal to the " iner t ia l"  mass. Although this relation is here 
pointed  out in the Newtonian  limit, the relativistic theory must obviously 
reproduce  this case, at least as a correspondence limit. Thus everything we 
know about  gravitation,  both experimental  and theoretical, points  to the 
principle of equivalence in the form )~ = 1, p~ = p~, hence also to the 
uniqueness of energy, Eog = E p g  = E i = E ,  as stated here. 

Finally, the single most impor tan t  consequence of the )k = 1 theory 
might  be its ability to generalize the mass - ene rgy  relation E = m c  2 from flat 
to curved space-t imes.  This can be seen from the above discussion (e.g., 
Eg = E,  = E when 3~ = 1) and also from a very simple example  as follows: 
Let a s ta t ionary particle with a gravitat ing mass mg be displaced adiabati-  
cally in a gravitat ional  field. The energy expended is d E  = - m _ d O ) .  The 
�9 " " / z l '  E / c ) -  = m ~ c - ,  inertial relation, g p~ p,, = m 2 c  2, on the other hand, gives gOO( Y~ , 
hence by using the metric above d E  = - E d ~  = - ( E / c  2) d ~ .  A compar i -  
son then shows t r i g  = E / c  2 which is an exac t  result (Yilmaz, 1973). ~ It is 
also unique to this theory, because in no other space-t ime theory has it been 
possible  to generalize E = m c  2 as a rigorous basis of  a strong principle of  

liThe same result follows from the red shift ~, = ~,o e-~', d E - - ( h ~ , / c  2) d~ since by the 
principle of equivalence dE = - m~ d~,  hence mg= h~,/c 2 = E / c  2. 
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equivalence and tie it securely to quantum mechanics. That the new theory 
so establishes the general validity of E = mc ?- may be regarded one of its 
compelling advantages. 

5. SUMMARY OF THE RESULTS 

This paper addresses a basic and very complex issue, namely, the 
proper formulation of a space-time theory of gravitation vis-/~-vis the 
principles of quantum mechanics. To achieve a comprehensible survey we 
have given, in the text, the basic arguments leading to the construction of 
the theory and its experimental confirmation. Where the need is perceived 
for further clarification we have referred to the appendices at the end of the 
paper or to some literature where such detail may be found. Still, because of 
the complexity and many-sidedness of the issue, the need exists for a brief 
recapitulation of the crucial points. The purpose of this section is to provide 
such a synopsis. 

(1) If we are to pursue a theory of gravitation in the sense of a 
generalized principle of relativity, the absolute values of the gravitational 
potentials must be localh, unobservable, that is, in any given frame of 
reference the physical effects must depend only on potential differences 
between the observer and the objects he observes. In combination with the 
red shift as a correspondence argument, and the relativistic requirement of 
svmmetr)' between space and time variables, this commits us to an exponen- 
tial line element with a multiplicative group property in terms of potentials. 
It is not absolutely essential to independently introduce ,~, ~ because they 
can be eliminated by the substitutions q~ = �88 In( - g), d) = �88 ln[( - g)L/_~q- I'0]. 
What is most important is that if the field equations are not chosen so as to 
satisfy the group property, then the absolute values of the potentials will 
become locally observable and will explicitly appear in the expressions of 
some classical or quantum mechanical effects. 

(2) Having introduced gu~ as a multiplicative group g#,, (~ - ,~', ~ - q,'), 
the integration constants ,~',qS' are interpretable as the potentials at the 
point of observation. This leads to g~,, ~ rt~,,, in the vicinity of the observer, 
that is, to a kinematics which is locally (observer not necessarily freely 
falling) special relativistic. For example the velocity of light, as defined by 
ds 2 = 0  would then be locally c as in special relativity. This allows the 
definition of an operational procedure of space-time measurements similar to 
special relativity. This alone is not, however, sufficient because ds 2 = 0 gives 
the velocity of light only in the sense of a particle. In order for the 
operational procedure to be applicable both for waves and particles (unity of 
waves and particles), the wave equation [] 2X = 0 must also yield the same 
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velocity c. ~2 This means that for a particle of zero rest mass the kinematical 
velocity v, the phase velocity V, and the group velocity v g must be equal and 
locally reduce to c. The new theory does indeed satisfy this requirement and 
preserves the operational procedure implicit in special relativity both for 
waves and particles and for all wavelengths. 

(3) In order to be able to set up the quantum mechanics in curved space 
one further needs to consider particles with nonzero rest mass and secure 
that the kinematical velocity v of  the particle is equal to the group velocity 
vg of the associated wave. The latter is necessary for the probability interpre- 
tation of quan tum mechanics. Again the new theory meets this requirement 
since in this theory one has v = vg, v - V =  c 2 ( x ) -  c 2. With this condit ion 
satisfied it is possible to set up quantum mechanics of atomic and nuclear 
systems in a gravitational field and compare  the predictions with experi- 
ments. We have seen that the experiments are in agreement with the theory. 

(4) What  happens when one or more of these postulates are not 
satisfied? We have examined a ;k-dependent generalization of the theory so 
as to recover the present theory when ?, = 1 and lead to the usual Einstein 
theory when ~, = 0. The purpose of this exercise was to mathematically 
study how the predictions change as a function of ~, and what basic 
principles of  physics are violated when ~, is not equal to unity. To do this as 
concretely as possible we have selected two quantum gravity experiments, 
one being the Cole l l a -Overhouser -Werner  experiment on neutron phase 
shift, and the other being the Hughes -Drever  experiment on the isotropy of 
inertia. The importance of this choice is that both experiments are quantum 
mechanical in nature and both are accurate enough to imply a significant 
upper  limit on ]~. - 1[. ~3 

(5) In the case of neutron phase shift what is violated when X :#: 1 is the 
strong principle of equivalence. The inertial energy-momentum is p,  = 
f(--g)l/2out, dV but the gravitational energy momentum turns out to be 
p~ = ~.p~,. The two Hamiltonians H = P0 and H ' =  *Po differ by a factor ~.. 
These both give the same geodesics (two Hamiltonians differing by a 
constant  factor give the same equations of motion), yet because of ~ they 
lead to different phase shifts, Thus, unless X = 1 the Hamiltonian is non- 
unique. The uniqueness i,s restored by imposing the strong principle of 
equivalence, namely, the equality of the passive and active gravitational 
mass. The experiment confirms this result by showing that there is no 
Hamil tonian in which 7~ can differ significantly from unity. 

~2The equality of t~g and c is required by quantum mechanics in the coordinate (SchrOdinger) 
representation to give 1't'] 2 a probability interpretation. 

L3Actually there are physical reasons to believe that )  ̀is a two-valued ( )  ̀= 0, 1. )2 = )  ̀) variable. 
In this case the experiments imply )̀  exactly with a high level of confidence. 
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(6) The H u g h e s - D r e v e r  experiment  is studied because one might wish 
to satisfy the principle of  equivalence in its weak form only, and still try to 
cover all the experiments.  In this case one would keep the inertial Hamil to-  
nian H and ignore the gravitational Hamil tonian  H' .  Al though such a 
procedure  is highly unsat isfactory (see Appendix  B) it nevertheless frustrates 
the ~ = 1 implication of  the neutron experiment.  The H u g h e s - D r e v e r  ex- 
periment,  however, shows that we still cannot  escape the ?~ = 1 imposit ion 
because this experiment is sensitive to a second-order  term in H = m0u0(?,) 
and, via that term, confirms the theoretical value ?~ = 1 on the basis of H 
alone. 
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A P P E N D I X  A: M A T H E M A T I C A L  S T R U C T U R E  (OR PRErI3"Y 
M A T H E M A T I C S  14 ) 

This appendix presents a mathemat ical  f ramework which can be studied 
independent  of any physical association and has a simple and elegant 
structure. Since the new theory is describable with this structure, by giving 
suitable interpretations to its equations, and since many  of  the statements of 
the text are easily provable  through it, we devote this appendix to an 
exposit ion of  this simple mathematics.  

Consider  a metric go,," We can conceive of  a functional substitution, 
go,,(~, q~) where ~ = q~ is a symmetr ic  matrix and q~ = q~ i s  its trace. Such a 
relation may be thought  of as expressing go,, in terms of q~ = ~ ( x )  instead of 
directly by x. N o w  consider the form 

go,,-- ( e2,0 

where i is the special relativistic limit go,, ~ ~o~ and q~ is the diagonal matrix 
]0. One can construct  special cases where the matrix expansions are known 
functions of  q~,O. In such cases the curvature quantities can easily be 
calculated. It turns out that all such cases follow a regular pat tern in that 

14This appendix is written in the spirit of Professor Dirac's opening lecture, "Pretty Mathe- 
matics.'" 
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they satisfy the equations 

R J' I ~, ;, 2(o2,;: + (A.]) 

[ ]  -~G = " % (A.2) 

, , = ! ~  ~-,*/~ (A.3) 

where [] 2 is the general d 'Alembert ian and -rd' is introduced (for conve- 
nience) to represent  []-4,;~. 

Note  that &,,,(q~, q~) can be inverted as in 

~ = � 8 8  6 = ~  l n [ ( -  g ) t / 2 ~ - ' O ]  

where g is the determinant  of &,,. This is easy to see from the original 
expression of g,,, since g = - exp[tr 2(q~ - 2~)] = - e 4'L The inversion above 
shows that the equations could also be written directly in terms of &,,,.~5 

Below we present two interesting solutions which can serve as existence 
proofs (by example) and as guides to physical interpretation. They can also 
give an idea of the elegant nature of the underlying mathematics: 

Example 1: The Static Field. Let q~ = q~~ y, z ), all other components  
being zero. Then q~ = t r (q~)=  q~o so that the general exponential  yields 

1 
- 1  

- 1  
- 1  

exp 2 q, 

1 
1 

1 
1 

exp4~ 

- 1  
0 

0 
0 

g o o  = e - . - -  gi~ = e 2 q '  

The line element therefore is 

d s  2 ~-" e - 2 ~  d r " -  - e2ea(dx 2 + d)  '2 + dz 2 ) 

comput ing the d 'Alembert ian [] % = ( - g ) -  1/2 0,,[( - g)l/2gU,, 0,,] ~p one has 

02 32 02 ) [~2(])= _e-2, / ,  _ _ +  + q~ 
3 x 2 3 y 2 

~SSince, for r~' = 0, the ~, q~ satisfy the d'Alembert equation of the same space, the g. , ,  may be 
considered a function of its own representations. 
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Let ~-~' = ~-0~ = r be ' r = Y j ( - g ) - J / 2 m o : a ( x - x i ) .  Since ( -g) l /2=e2e~ the 

solution is then of  the form 

inj 

J 

In t roducing  this into the metric and comput ing  the left-hand side of  
equat ion (A.I)  we get 16 

p _ _  I ,  t .  - - O.,t, 0 ~ + 1,~, 0% ~xO 

For  the assumed forms here considered 

namely,  it satisfies (A.3). 
Example 7. The Gravity Waves. Let " -  i _ . .  q,~ - q , l ( t  - .  ) = - q,~_(t - z )  all 

o ther  components  being zero. Let ~ denote  ,p~ and note that ,p = q,~ = 0. The 
general exponential  now gives 

- 1 exp4} 
- 1  

- 1  

o t 1 

- 1  
0 

-- g l l  ~ e4~, -- g22 ~- e - 4 f  

all other componen ts  of g,,, being as in r/,,. Similarly, if q~ = q~](t - z) = q,~(t 
- z), ep] = f, q, = 0 then one gets 

1 

- 1  
- 1  

- 1  

(o 
exp 4~ 0 1 

1 0 

0 

gll = g22 = - c o s h 4 ~ ,  gl2=g21 = --sinh4~" 

16This is exactly the Newtonian field stress-energy which is here recovered as a second-order 
correspondence limit. The conventional theory uses only a first-order correspondence, hence 
misses the ts It also misses the field Lagrangian because the field Lagrangian, L~ = - t/2, 
that is, - I / 2  times the trace of ts 
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These  two solutions are not independent .  They form a single transverse 
t ime-dependent  solution 

where epfl is given by 

O 3 2 ) 
[]2q,~= at 2 az 2 q,~=O 

0 

0 

Unde r  a rotat ion opera tor  Ra~ = a 2 ,  Ra 2 = - a ~  this wave behaves as 
R2~ = - - 4 ~  SO that  the eigenvalues of iR are +--2. This shows that the wave 
cor responds  to a spin-2 field. 

The  wave solutions q~ above give 

D~,; = - 2 G  2q, a 0 S  = �89 o f  ~ 

again satisfying all the equations.  
General Case. Similar calculations, using all fields so constructable,  

give the more general relations ~v 

showing that  there are many  solutions satisfying our equations. It has also 
P been proven  that, at least for all the exact solutions now known, the t u 

satisfies the relation 

D,t; : ( -  g ) - , / 2 3 , [ ( -  g ) ' / x t ; ]  = 40,g,~r ~B 

This follows f rom the form of t, as given above, because an extra term, 

F~t~t,,, vanishes. 

17The solutions possess integration constants ~'.qa' such that g,,~(~-~',q,-q~') is also a 
solution. In the most general case these may be conceived as infinite number of infinitesimal 
transformations. 
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This purely mathematical structure is suggestive of a physical interpre- 
tation as follows: 

(1) The matter stress-energy is "r,". It generates the gravitational field 
according to ~ 2q~ = "r~'. 

(2) The gravitational stress-energy is t~. It provides the equations of 
motion odu~/ds = D,,t~. 
With this interpretation in mind one immediately identifies ~ the total 
stress-energy T,"= "r~'+ t~, D, T~" ~ 0 and the geodesic equations of motion 
du. /ds  = �89 ~. 

Alternatively, the general expression of the curvature invariant is 
(rectangular coordinates will be used) 

i FtL ;~ . ,aB I/2 - R = D 2 1 n ( - g ) l / 2 + 2  ,,l~%~ - ( - g )  

Comparing with the result of our metric for the same quantity, namely, 
- R = 2(C] 2~ + t ), up to an irrelevant divergence, we have 

Dxq~= o, ( - g ) l / 2 = e 2 *  

The Lagrangian L~ = - t /2, 

L~, = - a x ~  axe~ ~ + �89 ax~ 

is represented by the second term, -~F~/~a~g "#, of R / 4 .  The other terms 
(in the general expression of R) vanish if one imposes the constraints 
(Yilmaz, 1975: 1979) 

o,,[(-g)tJ2g. ''] =o 

which can serve as subsidiary gauge conditions. They are satisfied by all of 
our exact solutions above. 

It may be noted that the exponential line elements were originally 
obtained by us by using the combination of the principle of equivalence and 
local Lorentz covariance. ~9 Again no field equations were used. indicating 
the preeminence of the principle of equivalence over arbitrarily motivated 
field equations. 

~SNote the way test particles are to be interpreted (Appendix B.) 
~gSee Yilmaz (1976), Appendix B. In that paper the general metric is obtained in three different 

ways. When Fourier components, satisfying the gauge condition k,,4,]~ = 0, are used, the 
solutions may be regarded exact. 
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A P P E N D I X  B: A L T E R N A T I V E  D E R I V A T I O N  OF )t = m'o/m o 

In the text we have shown that the parametric  extension covering the 
usual and the present theories of  gravitation satisfies ~ = m'o/m o. Here we 
provide an alternative proof  based directly on the fundamental  field equa- 
tions (1'). The proof  will also show how the divergence identities are related 
to the conservat ion laws of energy-momentum.  

Let the field equations be written as 

.v I ~, '77" P R - gR=8 L 
Obviously T~ ~ is used here in the sense of  "act ive" gravitational stress-energy 
since it is the source of the geometric curvatures. On the other hand the 
condit ion D,,T~ ~ ~ 0 must be assumed as the basis of conservation laws of  
energy-momentum.  Our  problem is how to relate the active (gravitational) 
ene rgy-momentum pfi to the total stress-energy T~ ". 

Here an analogy may help: Suppose we were interested in the electric 
charge. We have the divergence analog D~j"=--O. Since for a vector 7 the 

)1/7 .v divergence is equal to ( -  g ) - i / 2  3,,[( - g -j ] one can write 

AQ= f(-- g)l/2ovjv d ~  -~- fQ(- g),,2jq d ~ = 0  

o-- f(-g)'/ej"dV,=C 
Since the second part o f  the first equation is in the form of  ordinary divergence, 
the theorem of  Gauss  applies and,by a well-known method (Landau & Lifshitz, 
1%2; Dirac, 1975), z~ the conservation o f  charge Q = Zkq~ = C is obtained from 
the condit ion that D,,j ~ = 0. This procedure is perfectly valid for D,,Tff = 0, 
but one must  take care of a technical matter, namely, Gauss 's  theorem 
applies only to ordinary divergence whereas D,,T]' contains an extra term 
besides the ordinary divergence. To overcome this (mathematical)  hurdle we 

|, I, let T~" = r~' + Xt~, and write the covariant divergence of T u as 

I / 2  ,, 1 3  (-g)'/2D,,T~[--3~[(-g)'/R'r~[]+(-g) (XD,,t~,--~,g,,~raB)=O 

In analogy 

de,;= 

e;- 

to the case of  charge, we can now apply Gauss 's  theorem as 

f ( -  g) ' /2V~" d~=O 

f o,,[(- g)"',;'] dO +(x- i t / f ( -  gl":odu  dO/ds=C; 

2~ method 
but for D,,T~" 
how Gauss's 

of deriving the conservation of charge from D,,j" =~ 0 appears in many places, 
0 no detailed proof seems to be given. L. D. Landau did. however, point out 

theorem is to be applied. (See Note Added in Proof). 
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Using the substitution d~20,,=dV,, and setting J(--g)l/2r = P ,  the 
expression analogous to the conserved charge is 

, f f  I /2  P; = +(?` - l) ( - g )  o u" dr,, 

where in the second integral we have set dg2/ds = u ~ dV,,. Integrating over 
d% the last integral is again P~,. Thus we have 

p i =  ?`p. 

where P/,=Y~km'okGk and is conserved by virtue of D~T~"~0. In this 
derivation we have used ~-~' = o%u",  o = Y( - g ) - l / 2 m o j 6 ( x  - xl) .  One also 
finds of course P, = 2mOku~k to be conserved. This is due to the fact that 
for all values of ?  ̀ the geodesic equations of motion are valid as a conse- 
quence of the field equations so the inertial p~, = m o %  and gravitational 
p~ = m'o% obey the same equations. Conservation laws take the form 

P ; =  y = c ; - -  

as an analog of charge conservation Q = Yq = C. From the covariance of the 
procedure it is then evident that the energy-momentum of each particle is of 
the form p~ = ?`p~,, hence one has ?  ̀= re'olin o for all particles. The result is 
the same as in the text which used the integrations only over small volumes 
containing individual particles. 

The present method reveals that, besides the relation ?  ̀= re'olin o, the 
?,-dependent extension has the property of conserving the total energy- 
momentum P~= ?`P~, for any value of 3.. Here we wish to emphasize two 
interesting points: One is that the appropriate energy-momentum tested by 
the neutron experiment is P~ and not necessarily Pu" If we were to predict an 
experimental fact, and if we insisted the Harmltonian to come out of the 
fundamental gravitational field equations, we would choose P~ because P~, is 
not directly implied by the field equations unless ?`---1. This can be 
explicitly demonstrated as in section 3, where the 0, - l) t t , , in equation 
(2') causes the Hamiltonian to become XH. The second is that the conserva- 
tion laws are consistent with the equations of motion because, when all the 
particles are included, the field is the sum total of the fields of all the 
particles. It is easy to see this in the case of a static field where e? = Xjmoj / 
[ x -  xj[. When the equations of motion are evaluated one has 

du t, k _ ~ m o j 

m~ d-s-s - m~ ~ Ox~ - - - -  j ~ .  (xk-xj) 
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and there are as many such equations as there are particles. Summing over 
all particles one has the conservation laws 2j 

Pu -- ~ mOkU~,k = C~, 
k 

because the sum of the right-hand side of the equations of motion vanishes. 
In the new theory ~.=1 so that D,,T~":--O~(-g)-l/2~,,[(-g)~/2-r 
may be considered as the expression of total conservation laws. This is 
evident from f(-g)~/2D,,Tu~d[2~fa~[(-g)~/2,r~']d~ which is directly 
transformable by Gauss's theorem. That the equation ~ ) , , [ ( - - g ) t / 2 " r f ] : 0  

represents an expression of the conservation laws was pointed out a long 
time ago by Landau and Lifshitz (1962). 

In the full relativistic case there is of course also the energy-momentum 
radiation. Our present emphasis is, however, the intrinsic symmetry between 
"test" and "source" particles, namely, the concept of a test particle where 
the reaction (of test particle) on the rest of the system is not negligible but is 
equal and opposite to the action of the rest of system on the particle. The 
relativistic form of this concept and the phenomenon of radiation of 
particles with zero rest mass will be treated in a different communication. 

APPENDIX C: THE ISOTROPY EXPERIMENT 

In treating the isotropy experiment of Hughes and Drever two crucial 
points are the following: (1) Quantum mechanics requires vg = v and when 
this requirement is satisfied the Hamiltonian H possesses an anisotropic 
term which vanishes only when ,~ = 1. lf~. :/: 1 it does not vanish. (2) It is not 
possible to argue that the anisotropic term would depend on potential 
differences ep - 4,', r - ~', because unless ?~ = 1 the metric does not exhibit a 
group property g~(~  - ep', r - ~'). (When ~. ~ 1 this form does not satisfy 
the field equations with appropriate boundary conditions and cannot be 
used as a metric.) Therefore when ~. 4:1 the absolute values of ,~ and 
become locally observable, leading to an experimental test of ~. by virtue of 
the high precision of the Hughes-Drever experiment. The purpose of the 
present appendix is to explicitly show the above properties of the ?~-depen- 
dent equations. 

2tNotice that masses cannot drop out of the equations even when m, =rap = m,~ as their 
presence is necessary_ for the global conservation laws. Quantum mechanics also tells us that 
mass cannot drop out; otherwise one cannot infer the phases uniquely. 
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The most  effective way to deal with this p rob lem is to solve the 
},-dependent  equat ions  and explicitly display the Hami l ton ian .  The  unique 
},-dependent solution that  satisfies the v~ = t~ condi t ion in spherical coordi-  
nates  is (Yilmaz,  1980: 1977) 

d s 2 = e  21~ ~)dt_e21r k) 

> (,2dO2+,esin -Od e)+  d,'- 

e o = M / r ,  } , = l - e  2 

(No te  that  for X = 0 this is a t rans form of the Schwarzchild metric.) where 
eo = M / r  is a solution of the equat ion [] z ~ =  4~-MS(r) .  One of the im- 
por t an t  points  to note here is that  this is the most  general  form satisfying 
v = t,~ and the bounda ry  condi t ions at r = oo. 2~- The integrat ion constant  k 
appears  in the exponents  but not in the spatial  relat ions inside the bracket .  
Consequent ly  the quant i ty  

_ c 2 = { s i n h e ~ l  2 e e 
r -  <7 

d e p e n d s  on e~ and not on g -  k = ~ -  q/. One  can say that  the reference 
f rame is de te rmined  by the condi t ion v = v~ and that  the physical  Anisot-  
ropy  as p robed  by the q u a n t u m  mechan ic  is P - 1. The  second impor tan t  
poin t  is that  letting ({El2 + t o o ) X = 0 ,  X = r-if(t, r) one finds t~ = t~. The  
lat ter  is required by the probabi l i ty  in terpre ta t ion  of quan tum mechanics .  
One  can therefore set up quan tum mechanics  in this line element.  The  
Hami l ton i an  H = ihD o is given by  (for X = 1 see the last page)  

H = e  - ' ~ - *  [,ha + e -2~o-* ' r (p2s in2a  Fp2cos"c~)] 'j2 

where p is the ins tantaneous  m o m e n t u m  (for detail see Yilmaz, 1980; 1977: 
Hughes ,  1964; Drever,  1961). Locally,  that  is, when k = ~, this H a m i h o n i a n  
gives (Yilmaz, 1975; 1977; 1979; 1980) 

,02 

where H o is isotropic. The  extra term is an anisotropic  per turbat ion .  This  
ext ra  term depends  on }  ̀- 1 and r Al though on the surface of the earth 

221.n general the metric does not exhibit a group property in the coefficient of rt~,,. See the 
example of footnote 1 above. 
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952= 5 • 10-Jg, the anisotropic term (if it exists) can be detected in certain 
atoms or nuclei (TLi wi thj  = 3 /2  was used) by applying a nuclear magnetic 
resonance technique. Such a technique is known to be accurate_to a 
ramarkable precision of 5 X 1 0  -23 (ratio of ( IAHI)  to T=pE/2mo=lO 
MeV). Experiments show no such anisotropy, thus setting an upper limit 
] ) ~ - - ] ] < 5 X I 0  - 3  

The theoretical treatment of the Hughes-Drever  experiment shows that 
quantum mechanical requirement ug = v (probability postulate), in some 
sense, leads one to use selected systems of coordinates, namely, the ones in 
which the kinematical velocity t~ of a particle is equal to the group velocity 
vg of its associated wave. To what extent this commits us to the concept of a 
privileged system of coordinates is not clear. Here we may assume that some 
sort of a commitment is involved, especially if we insist on the Schr6dinger 
representation. The Schr6dinger representation (that is, the representation 
in which position operators are ordinary numbers) is, after all, the coordi- 
nate representation of quantum mechanics and it would not be surprising if 
this representation required special coordinates in order to be consistent 
with the probability postulate. Such a requirement could in fact be regarded 
as a selection process as quantum mechanics plays a selective role over the 
classically possible dynamical states. On the problem of quantum mechanics 
and coordinates Professor Dirac once made the following remark (Dirac, 
1976, footnote p. 114): 

This assumption is found in practice to be successful only when applied with the 
dynamical coordinates and momenta referring to a Cartesian system of axes and not to more 
general curvilincar coordinates. 

The remark refers to the important problem of how to make a transition 
from classical to quantum mechanics (Yilmaz, 1981). 2s If we have a classical 
Hamiltonian H( p ,  q), and if q 's  are Cartesian coordinates, then the sub- 
stitution p = ih O/Oq yields a valid quantum mechanical Hamiltonian, but if 

�9 q 's  are curvilinear coordinates we do not know how to set up correctly the 
quantum mechanics. 

Note that the problem already occurs in the simplest possible situa- 
tions, namely, the nonrelativistic quantum mechanics of a particle, and even 
when the forces acting on a particle are trivially simple. The relativistic 
gravitational counterpart of making a valid transition from classical to 
quantum mechanics in curved space must therefore be regarded as corre- 
spondingly more difficult and, up to present, unresolved. 

2~This means the signal velocity has no dispersion which can be observationally tested. Another 
test of the theory could be a direct comparison of the velocity of light in vertical and 
horizontal directions in the laboratory_. The present theory, favors local Lorentz covariance as 
the proper generalization of special relativity and relegates general covariance to a mathe- 
matic',d requirement of computational consistency. 
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Note  also that  the p rob l em is not  necessar i ly  how to make  a t rans i t ion  
to curvi l inear  coord ina tes  when one has the correct  H a m i l t o n i a n  in Car te-  
s ian coordina tes .  This  can p r e sumab ly  be done  in some cases by coord ina t e  
t r ans fo rmat ions .  The p rob l em is how to set up q u a n t u m  mechanics  when 
one did not  s tart  out  with a Car tes ian  system or  when there are no Car tes ian  
systems of axes, as in the case of a curved space. 

Our  p r o p o s e d  solut ion to this p rob l em of how to set up q u a n t u m  
mechanics  in curvi l inear  coord ina tes  in general ,  and in curved spaces in 
par t icu lar ,  is as follows: Q u a n t u m  mechanics  requires the k inemat ica l  t~eloc- 

itv t~ of a par t ic le  and  the group t~elociO, v~ of its associa ted  wave to be equal  
(p robab i l i t y  postulate) .  In the l imit  of zero rest mass, or inf ini tely large 
momen ta ,  the phase  veloci ty V and the group veloci ty t) x are also equal.  
Thus  for zero rest mass  one has a unique signal veloci ty t~ = t~ = V = c (x) .  
This  unique signal veloci ty can serve as the basis  of an opera t iona l  proce-  
dure  of measu remen t s  valid both  for waves and part icles .  This is necessary 
for the uniO' of wave  and particle poin ts  of view, beginning  at the level of 
their  opera t iona l  contents .  No te  that the signal veloci ty must  be the same 
for all wavelengths (Yilmaz,  1981), for we canno t  have dif ferent  ope ra t iona l  
p rocedures  for di f ferent  wavelengths.  When  these cond i t ions  are sat isf ied 
one can show that  a par t ic le  of nonzero  rest mass  satisfies t~ = v, e .  V = c2(x ) 
for all f requencies inc luding  that  of infini te  f requency e~_ = t,. In o ther  
words  q u a n t u m  mechanics  can then be set up in analogy to Lorentz  space 
(in Minkowsk ian  coord ina tes )  and  to Ga l i l ean  space (in Car tes ian  coordi -  
nates).  F r o m  our  po in t  of view the virtue of the la t ter  two systems is that  
they satisfy the above  cond i t ions  au tomat ica l ly .  

N o w  why does the choice of  coord ina tes  make such an unexpec ted  
difference? The reason is that  the coord ina t e  velocity of a par t ic le  with zero 
rest mass is found from the line e lement  ds 2 = 0, whereas the group velocity 
of  a wave with zero rest mass is found from [] 2 X = 0. These two (coordi-  
nate)  velocit ies are in general  d i f ferent  unless the coord ina te  system is of a 
selected kind.  24 This  intui t ively  nonobv ious  fact can be apprec ia ted  only by 
an explici t  example .  Take  the line e lement  to be d iagonal  and iso t ropic  

d~ 2 = A dt 2 -- B(  dx  2 + dl '2 + dz 2) 

where,  A, B are funct ions  of x, y,  z. There  exists a solut ion of the form 

q z qo e~(~~ kx) 

24H. Weyl often strcssed the need for selected systems of coordinates both for wave-particle 
duality (c~ = c l and for purposes of representation of spinor particles (local orthogonal 
group). 
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where q0 is constant. 

~o2=AB-i(k2 +~ .k )  

where ~ = i(AB) -172 8(AB) V2. The three velocities are 

dx2 + dY2 + dz2 1 L/2 v=  = ( A B - i ) i / " -  
dt 2 f 

v=  : ( A , - ' )  1+ 

~ '  i V I( vg-- Ok - A B -  l + ~ k  ) 

We can see that only when ,~ = 0 are the three velocities equal, and this 
requires AB = const. (If ~: :r 0 then only k ~ m limit satisfies v~ = t~ which 
is, in turn, equal to t~.) A special relativistic boundary condition then implies 
A = I /B,  so in order to be able to set up quantum mechanics in isotropic 
coordinates the metric must also satisfy A = 1/B. According to this result 
one cannot set up quantum mechanics, for example, in the isotropic 
coordinates of Einstein's theory, since its isotropic solution does not satisfy 
this condition. 25 One can, however, set it up in the nonisotropic coordinates 
given in the earlier part of this appendix (set X = 0 or e =  1). But then the 
Hamiltonian (and also the signal velocity) will have a small anisotropic term 
which can be calculated and experimentally tested as to its existence. We 
have seen that the experiment gives X = 1, which in turn implies A = I/B. 
This result may be considered empirical evidence that quantum mechanics is 
consistent with the strong principle of equivalence which also requires X = 1. 

We conclude the discussion with a slight elaboration. Let the wave 
�9 equation be of the form 

( D"D,, + mo /h  2)q = 0 

q : q o  eis, 

Then there exists a solution which renders H(p , x )  and w=H(hk ,  x) 

I12 fly 
25Note that the condition ~ = 0 is none other than the gauge condition 8,,l( - g) g ] = 0 of 

Appendix A. The wave e" ""-k �9 } = e {, ,,h }pp.~, is not plane since p~, is constant  under covariant 

and nol under ordinary, differentiation. 
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func t iona l ly  the same if 

[~ 2qo = 0, [~2S+2qo 'g""DuqoD, ,S=O 

In rec tangu la r  coord ina te s  qo = const  and  in spher ica l  coord ina te s  qo = 
C / r .  26 Such coord ina te s  al low the Schr6dinger  equa t ion  to be set up 
direct ly ,  or  by  t r ans fo rma t ion  f rom ano ther  sa t is fying the same condi t ions .  
In  rec tangu la r  coord ina tes  these are equiva lent  to the " H a r m o n i c  condi -  
t ions"  0 , , [ ( - - g ) l / 2 g J ' ] k ~ , = 0  which are sat isf ied by  our  solut ions.  Such 
coo rd ina t e s  form a " ' se lected"  group within all c lassical ly  a l lowable  ones 
and  may  here be cal led "Schr/3dinger  coo rd ina t e s "  since they are res t r ic ted 
to a group in which q u a n t u m  mechanics  can be set up in the Schr/3dinger 
represen ta t ion .  2v Solu t ions  of our  theory au toma t i ca l ly  meet  this q u a n t u m  
mechan ica l  cond i t ion  and,  in addi t ion ,  sat isfy the s t rong pr inc ip le  of 
equivalence.  I t  is fur ther  found  that  the s t rong  pr inc ip le  of equiva lence  and 
the q u a n t u m  mechan ica l  supe rpos i t ion  of s ta tes  are cons is ten t  and  this 
avoids  cer ta in  ambigui t i es  which would  arise if the p r inc ip le  of equiva lence  
were assumed  only  in its weak form. In the s tat ic  l imit  the m 0 =/= 0 and 

m 0 = 0 H a m i l t o n i a n s  are 
-4, ~ )1/2 H = e  (m~-]-e-2epp 2 

H = e - 2 * [ p l  

and  these reproduce ,  wi thout  ambigui ty ,  all known  exper imen t s  having  to 
do  with a s tat ic  field of g rav i ta t ion  (Yilmaz,  1980; 1977). 

H I S T O R I C A L  N O T E  O N  F I E L D  S T R E S S - E N E R G Y  

As is well known,  Eins te in  p resen ted  a field s t ress-energy (let us call it 
-1, t-~) on the basis  of  his l inear  a p p r o x i m a t i o n  to g~,,. This  t~, was o b t a i n e d  by  

c o m p u t i n g  the p roduc t  terms of  Chris toffel  symbols  in R ~ - � 8 9  8~'R. Less 
well known  is the fact tha t  some 20 years  la ter  Einstein found this was a 
mis take .  In a let ter  to Max  Born (Born & Born, 1971) he wrote:  

Together with a young collaborator, I arrived at the interesting result that the gravitational 
waves do not exist, though they had been assumed a certainty to the first approximation. This 
shows that the nonlinear general relativistic field equations can tell us more, or rather, limit us 
more than we have believed up to nov,'. 

26The equations lead to qoq[~' -2q~ 2 = O, hence qo = C, C/r. Thus [] 2qo = 0 gives (for the 
previous metric) A = 1/B both in rectangular and in spherical coordinates. 

27There are theoretical reasons to believe that the only Schr6dinger coordinates with a 
relativistic covariance group are those which at the same time satisfy )~ = 1. Note that 
[ ]  2q0 = 0 has solutions more general than q0 = C, C/r e.g. Rm YT'l (cos0) making up the 
amplitude qo- 
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v 1 v With hindsight the origin of the mistake is clear: R~, - ~8~R contains terms 
a,,F and F. F where F are Christoffel symbols. A first-order approximation 
to &,~ can be meaningful only for the O,F part since F- F is second order. To 

-" meaningfully (it is second order), one has to carry &,,, to second calculate t~, 
order. When this is done the second-order contributions to a,,F combine 
with F .F  giving a mathematically legitimate quantity. But in Einstein's 
theory this combination must necessarily vanish in free space because the 
free space equations are R~,~ = 0, R = 0, requiring everything to vanish order 
by order. Unfortunately Einstein's result seems to be forgotten, creating 
confusion even to this day. Some authors transfer a t- S to the right-hand side 
of the equations and claim it a legitimate stress-energy. This is equivalent to 
transferring the second-order contributions of ~,,F to the left, which destroys 

v I l) the integrity of the divergence-free tensor R , -  ~6~R. These matters were 
pointed out by many authors, including C. MOller (1958), L. Infeld (1959), 
A. E. Scheidegger (1956), N. Rosen (1956), A. A. Logunov and co-workers 
(Logunov et al., 1977; Denisov and Logunov, 1980), the present writer 
(Yilmaz, 1975, 1979), and, as it turns out, clearly noted by Einstein himself. 
It is a curious phenomenon that despite simple mathematical proof, the 
confusion lingers, leading to elaborate calculations with conflicting results. 

v In the new theory a legitimate field stress-energy (t~,) exists, as we have seen. 
It is the canonical stress-energy of the Lagrangian of Appendix A. 

NOTE ON FIELD QUANTIZATION 

A chief ingredient of field quantization in any field theory is to bring 
the field energy-momentum 

P. = f / -  g)'J2,;dV,, 

into a form P~,= Yjlcj[2njhk~,l where n j =  0,1,2 . . . . .  oo or n I =0 ,  1. This is 
achieved by interpreting the field quantities appearing in the quadratic 
expression of tS as operators and subjecting them to commutation relations. 
The commutation relations are also quadratic in field quantities, so the 
quantization can be achieved by choosing the commutation properties 
appropriately. It is obvious, however, that unless one has a legitimate 
nonzero tS to start with, commutation relations cannot serve any purpose. 

v When one has a legitimate nonzero t~, one may facilitate the appropriate 
formulation of quantization by obtaining the t~ as the canonical stress- 
energy of a field Lagrangian. One can check that our t~ is the canonical 
stress-energy of our field Lagrangian in Appendix A. 
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The above can also be done directly on g~,,, if we rewrite the Lagrangian 
as  

and vary it under the gauge condition 3,,[(-g)l/2g~'"]=O (rectangular 
coordinates). The gauge condition is equivalent to imposing 3 "=  g"" ~., that 
is, to absorbing the g~" into ~" and thereby omitting the variation of the 
corresponding g"" from the variation of the total action. (In other words the 
gauge here acts as a kinematical constraint). A lengthy but straightforward 
calculation leads to the Euler-Lagrange equations 

which are equivalent to our field equations [] 2q~ = 0, [] 2~, = 0. When the 
matter action is added, these equations become [] 2q~ = +~. [] 2,~ = ~_. where 
~'~ is the matter current and + is its trace. 

An important consequence of obtaining both the field stress-energy t~ 
and the term [ ] 2 ~  identifying the matter stress-energy from the same 
Lagrangian is that both t. and % must have the same numerical coefficient 
(same in all choices of units) when they are added to form the total 
stress-energy T."= %"+ t~. In other words ~'~' alone cannot be present in the 
geometric field equations; it must always be accompanied by the t~'~ on equal 
footing. 

A quantization of the gravitational field along the lines of the new 
theory is carried out for the simple case of prescribed c-number sources with 
a coordinate measure ( - g ) ~ / 2  d4x. No fundamental difficulty seems to be 
encountered. The more difficult case of Dirac-type q-number sources is 
being attempted as a local gauge theory. We hope to report on this at a 
future occasion. 

NOTE ADDED IN PROOF 

The crucial discussion in Appendix B may be made clearer if the basic 
conserved quantities P.. Ap. = 0 are worked out ahead of time. Start with 
D,,T]'= 0 and form the increment AP. = r e - g D ~ T .  ~ d a  = 0. To obtain the 
conserved quantity P~, we need to use Gauss' theorem df~ 3,, = dV,, but for 
this we must have the ordinary divergence ~., because Gauss' theorem works 
with the ordinary divergence only. We therefore split T]' as T]' = "r~'+ t~, and 
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impose the "integrability conditions" D,.t(, = l O~, g~l~r "~. We then get 

= 0 

P. : f e -  d<, = c , 

which is the mathematically correct form of the conservation laws for a 
symmetric tensor T~,, = T,,~,, D,,T~ ~ = 0. For a vector j", D , , j " =  O, or for an 

K . . . .  K "  D " antisymmetric tensor ,,,~ - ~,~, ,.K,~/~ = O, such a splitting is not neces- 
sary because then the divergence is already in a form suitable for Gauss' 
theorem. The integrability conditions turn out to be the basis of the 
field-geometry equivalence mentioned in the text. 
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